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McCABE, R. T., D. R. MAHAN, R. B. SMITH AND J. K. WAMSLEY. Characterization of [JH]alprazolam binding to central 
benzodiazepine receptors. PHARMACOL BIOCHEM BEHAV 37(2) 365-370, 1990.--The binding of the triazolobenzodiazepine 
[3H]alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat 
brain. Studies using nonequilibrium and equilibrium binding conditions for [3H]alprazolam resulted in high specific to nonspecific 
(signal to noise) binding ratios. The binding of [3H]alprazolam was saturable and specific with a low nanomolar affinity for 
benzodiazepine receptors in the rat brain. The K a was 4.6 nM and the Bma ~ was 2.6 pmol/mg protein. GABA enhanced [3H]alprazolam 
binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptor 
sites had a very weak or negligible effect on [3H]alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment 
of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding 
profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other 
benzodiazepines in its class. 
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CHARACTERIZATION of receptors which specifically bind 
benzodiazepines has been well-documented (42, 46, 59, 61, 66). 
In the central nervous system, these agents are widely used 
therapeutically for their anxiolytic, anticonvulsant and sedative- 
hypnotic properties (33, 34, 63). The benzodiazepines produce 
these central pharmacological actions by potentiation of the 
postsynaptic membrane response to gamma-aminobutyric acid 
(GABA) on an oligomeric receptor complex (21, 27, 28, 45, 48, 
62). When the benzodiazepine receptors are activated, GABA is 
released into the synaptic cleft and exposed to the postjunctional 
membrane where an alteration in chloride ion conductance occurs 
(24,52). The chloride ionophores open in response to GABA 
receptor stimulation (31), resulting in chloride influx down the 
concentration gradient, and ultimately in neuronal inhibition of the 
affected cell. Benzodiazepine actions are thought to be mediated 
via allosteric linkage of their receptors to low affinity GABA A 
receptors (47,65), which increase the frequency of chloride ion 
channel opening (5,67). 

Many benzodiazepines appear to be indistinguishable on the 
basis of in vitro binding studies, although there are some differ- 
ences. For instance, peripheral sites appear to exist which are 
different than the central type of receptors (7,8). Novel and 

therapeutically useful benzodiazepine compounds have been de- 
veloped that interact with central and/or peripheral benzodiazepine 
receptor sites (63). Both flunitrazepam and diazepam recognize 
central and peripheral sites while Ro15-1788 and clonazepam are 
more selective for central receptors (4, 8, 18, 37, 41, 51, 63). The 
binding of tritiated agents to central benzodiazepine receptors has 
been studied extensively and the distribution of these sites has 
been established autoradiographically (45,69). These central re- 
ceptors appear to be represented by two putative subtypes which 
have been designated as benzodiazepine-1 and benzodiazepine-2 
receptors (BZ-1 and BZ-2). Many agents such as flurazepam, 
clonazepam, diazepam and Ro15-1788 do not discriminate be- 
tween these heterogeneous receptor populations. However, quaze- 
pare, 2-oxo-quazepam (6, 15, 68, 70), the triazolopyridazine CL 
218,872 (29,43) and the ~-carbolines (44) are more selective for 
BZ-1 sites. These receptor subtypes may relate to two different 
conformations of the same receptor in the brain (38) or distinct 
receptor subtypes produced as different gene products (44,46). 
Also, binding to the peripheral benzodiazepine receptor sites has 
been analyzed with [°H]Ro5-4864 (51) and these sites have been 
localized in the brain as well as the periphery (3,26). 

Triazolobenzodiazepines appear to differ from other benzodi- 
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azepines with regard to their in vivo characteristics (57,60). The 
triazolobenzodiazepine alprazolam is a clinically effective drug 
prescribed for its unique properties (12,17). Alprazolam has been 
reported to possess anxiolytic (1, 14, 36) and antidepressant (22, 
23, 39, 49, 50) activity. Additionally, this compound has been 
useful in the treatment of panic disorder or agoraphobia with panic 
attack (2, 9, 11, 20, 32, 55). The availability of [3H]alprazolam 
has allowed the in vitro characterization of binding to central 
benzodiazepine receptors in membrane preparations of the rat 
brain. In the present study, we report findings from nonequilib- 
rium, equilibrium saturation, and displacement studies of 
[3H]alprazolam binding to benzodiazepine receptors. The binding 
to benzodiazepine receptor subtypes and other unrelated sites was 
analyzed to determine if the unique properties of alprazolam could 
be accounted for on the basis of receptor selectivity. 

M E T H O D  

Male Sprague-Dawley rats were housed under a 12-hr light/ 
dark cycle and allowed to consume fresh food and water ad lib. 
The animals were deeply anesthetized with chloroform or CO 2, 
and the brains were rapidly excised. Membranes from whole 
brain, cortex, nucleus accumbens, or hippocampus were prepared 
as described. Whole brains were homogenized in 20 volumes of 
0.32 M sucrose (4°C) using a Teflon pestle in a glass tube. The 
homogenates were centrifuged at 3,000 rpm for 10 min. Subse- 
quently, the crude pellets (P1) were discarded and supernatants 
resuspended in sucrose and centrifuged for 45 min at 150,000 × g 
(Beckman rotor 50.2 Ti). The supernatants were decanted and the 
pellets (P2) resuspended in distilled-deionized water to osmotically 
rupture the cells and release endogenous GABA and any other 
substances that may interfere with subsequent binding. A second 
centrifugation was performed at 150,000 × g for 30 min. Again, 
the supernatants were discarded and pellets resuspended in 50 mM 
Tris-HC1 buffer (pH 7.4 at 4°C) and centrifuged a final time at 
150,000xg for 15 min. The mitochondrial, microsomal and 
synaptosomal fractions were used without further purification. In 
additional experiments, isolated cortical, nucleus accumbens, and 
hippocampal tissues were homogenized with a Brinkmann Poly- 
tron (setting 6-7, 15 sec) in 20 volumes of 50 mM Tris-HC1 buffer 
(pH 7.4 at 4°C). Lysed tissues were centrifuged at 23,000 × g for 
20 min at 4°C. The pellets were resuspended in an equal volume 
of buffer and recentrifuged. This "washing" procedure was 
performed four times. Pellets were resuspended in 50 volumes of 
buffer for binding assays. Triplicate samples were used in all 
experiments. Protein content was determined by the method 
described by Lowry et al. (35). 

Association studies were accomplished by incubating whole 
brain membranes in 50 mM Tris-HC1 buffer (4°C) containing 3.0 
nM [3H]alprazolam (specific activity 15-45 Ci/mmol; provided by 
the Upjohn Company) for 1-80 min. Nonspecific binding was 
defined by 10 p.M clonazepam. All binding reactions were 
terminated by rapid filtration through Whatman GF/B filters using 
a Brandel (Gaithersburg, MD) cell harvester followed by 4 × 2-ml 
rinses in buffer (4°(3). Bound [3H]alprazolam was determined by 
liquid scintillation counting. Saturation studies were performed by 
incubating membranes in various concentrations (0.15-26 nM of 
[3H]alprazolam. 

Modulation studies to assess the specificity and selectivity of 
[3H]alprazolam (1.0-2.0 nM) binding to whole brain or cortical 
membranes were performed using various concentrations (0.5 
nM-100 p.M) of ethyl [3-carboline-3-carboxylate (13CCE), quazepam, 
bicuculline methiodide, clonazepam, Ro15-1788, Ro5-4864, PK 
11195, picrotoxin, triazolam or alprazolam. Additionally, the 
interaction of unrelated ligands with [3H]alprazolam (3.0 nM) 
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FIG. 1. Association of [3H]alprazolam binding to membranes of whole rat 
brain. Tissues were prepared and assayed as described in the Method 
section. The binding of [3H]alprazolam (3.0 nM) was performed by 
varying the period (1-80 min) of incubation in buffer (4°C) containing the 
tritiated ligand. Equilibrium was reached within 10 minutes of incubation. 
A 45-min incubation was arbitrarily selected for use in subsequent assays. 
Values are from two separate assays and represent means from triplicate 
samples. 

binding to whole brain, cortical, and hippocampal membranes was 
studied using various concentrations (1.0 nM-100 IxM) of imip- 
ramine, desipramine and amitriptyline (antidepressants), cloni- 
dine, propranolol, WB4101, piperoxane and idazoxane (adrenergic 
ligands), baclofen (GABA B agonist), naloxone (opiate antago- 
nist), glycine and strychnine (glycine receptor ligands), atropine 
(muscarinic ligand), buspirone and fenfluramine (serotonin recep- 
tor ligands), histamine, MK-801 (phenyclidine and excitatory 
amino acid receptor ligand), reserpine and amphetamine (amine 
uptake site ligands), and dopamine and sulpiride (dopamine 
receptor ligands). The binding of [3H]alprazolam (4.0 nM) to 
membranes of nucleus accumbens tissue was studied in the 
presence of each of the following drugs (1.0 p,M) with and without 
the addition of spiperone (I.0 IxM): Ro15-1788, sulpiride, desi- 
pramine, chlorimipramine, d-amphetamine, alprazolam, and sero- 
tonin. Incubations with nucleus accumbens membranes were 
performed using 50 mM Tris-HC1 (pH 7.4, 4°C) buffer containing: 
120 mM NaCI, 5 mM KC1, 2 mM CaC12, 1 mM MgC12, and 0.1% 
ascorbic acid; or 120 mM NaC1, 100 nM pargyline, and 0.001% 
ascorbic acid. 

RESULTS 

The binding of [3H]alprazolam to benzodiazepine receptors 
associated fairly rapidly and reached equilibrium by 45 min. 
Figure 1 illustrates the association curve for [3H]alprazolam 
binding to whole brain membranes and demonstrates that specific 
binding was approximately 85%. Thus, in all subsequent experi- 
ments, membranes were incubated in 50 mM Tris-HC1 buffer (pH 
7.4 at 4°(3) for 45 min. Saturation experiments of [3H]alprazolam 
binding yielded a K d of 4.6 nM and B~x  of 2.6 pmol/mg protein. 
Thus, [3H]alprazolam binding to benzodiazepine receptors was 
saturable and of high affinity. Figure 2 shows the saturation 
isotherm for [3H]alprazolam binding. 

The order of potency for competitive inhibition of 
[3H]alprazolam binding to benzodiazepine sites in whole brain 
membranes was: clonazepam > triazolam > alprazolam > Ro15- 
1788 > BCCE > quazepam. These data are shown in Table 1 and 
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FIG. 2. Saturation isotherm of [3H]alprazolam binding. Membranes 
(whole brain) were incubated for 45 min in buffer (4°C) containing various 
concentrations (0.15-26 nM) of [3H]alprazolam. The reaction was fol- 
lowed by rapid filtration and 4 x 2-ml rinses in ice-cold fresh buffer. Data 
represent two separate experiments and are means of triplicate samples. 
The saturation isotherm yielded a Kd of approximately 4.6 nM and Bm~x of 
2.6 pmol/mg protein. 

inhibition curves are illustrated in Fig. 3. Displacement of 
[3H]alprazolam binding to cortical membranes by benzodiazepine 
receptor ligands yielded the following order of potency: clona- 
zepam > triazolam > Ro15-1788 > alprazolam > [3CCE > 
quazepam (Table 1). Ro5-4864 and PK 11195 did not displace 
[3H]alprazolam binding until very high concentrations were at- 
tained. GABA added to the incubation medium enhanced 
[3H]alprazolam binding 230% (1 mM) in whole brain, 126% (100 
mM) in cortex, and 130% (100 mM) in hippocampus. The results 
obtained with other ligands indicated that [3H]alprazolam is a very 
weak competitor for these other sites (if at all) and demonstrated 
[3H]alprazolam behaves as a typical benzodiazepine receptor 
ligand. The K i values for these unrelated agents are shown in 
Table 1. Modulation studies of [3H]alprazolam binding to dis- 
sected regions of cortex, nucleus accumbens, and hippocampus 
did not show significant inhibition of radioligand binding. The 
binding of some of these ligands is sodium dependent, thus, 
incubations were performed in the presence or absence of  120 mM 
NaC1. Specific binding of [3H]alprazolam (3.0 nM) was not 
significantly altered by including 120 mM NaC1 in the incubation 
medium (data not shown). 

DISCUSSION 

The binding of [3H]alprazolam is shown to be saturable, 
specific, selective, and of high affinity for benzodiazepine recep- 
tors. [3H]Alprazolam associated rapidly and saturated a finite 
receptor population when reaching a concentration of 10 nM. The 
Kd and Bma x values were 4.6 nM and 2.6 pmol/mg protein, 
respectively. The equilibrium dissociation constant (Kd) of alpra- 
zolam was consistent with reported IC5o values for displacement 
of benzodiazepine ligand binding (13). The Bma x values obtained 
using [3H]alprazolam agree well with previous estimates for 
benzodiazepine compounds (10, 25, 33, 64). GABA enhanced 
[3H]alprazolam binding to membrane preparations (whole brain, 
cortex, and hippocampus) and this property was similar to other 
benzodiazepines. 

The hypothesis that the binding of alprazolam does not dis- 
criminate between BZ-1 and BZ-2 receptors is consistent with the 

TABLE 1 

M O D U L A T I O N  [ 3 H ] A L P R A Z O L A M  B I N D I N G  

[3H]Alprazolam Inhibition 
Drug Cortex, K i (nM) Whole Brain,K i (nM) 

BZ Receptor Related: 
alprazolam 3.9 -+ 0.2 5.5 -+ 1.5 
[3CCE 6.0 --- 0.3 14.5 ~ 3.7 
bicuculline methiodide 14,000 
clonazepam 1.0 -+ 0.2 2.8 _ 0.3 
PK 11195 14,000 > 1,000,000 
picrotoxin 22,DO0 -- 
quazepam 129 -+ 18 325 _+ 12 
Ro15-1788 2.1 --- 0.1 7.8 _+ 2.1 
Ro5-4864 > 100,000 64,000 
triazolam 1.1 --- 0.04 7.0 _+ 0.6 

BZ Receptor Unrelated: 
amitriptyline > 1DO,000 -- 
amphetamine > IO0,DO0 -- 
atropine > 100 ,DO0 -- 
baclofen > 100,000 > 1 ,DO0,0DO 
buspirone > 100,DO0 -- 
clonidine > IDO,000 > 1,000,DO0 
desipramine > 1DO,000 > 100,DO0 
dopamine > 1DO,DO0 -- 
fenfluramine > 1D0,000 -- 
glycine > 100,DO0 -- 
histamine > 100,DO0 -- 
idazoxan -- > 1,000,DO0 
imipramine > 100,0DO 14,000 
MK-801 > 100,DO0 -- 
naloxone > 100,0DO -- 
piperoxane > 1DO,0DO -- 
propranolol > 100,000 > 1,000,000 
reserpine > IDO,DO0 -- 
strychnine > IO0,DO0 -- 
sulpiride -- 7,600 
WB 4101 > 100,000 -- 

Modulation of [3H]alprazolam binding in rat membrane preparations. 
Tissues were prepared and assayed as described in the Method section. 
Membranes were incubated in buffer containing [3H]alprazolam and 
differing concentrations of the agents listed. K i (nM) values determined by 
the equation K i = IC5o/1 + [L]/KD. Values (mean _+ SEM) are from 
three separate experiments and represent triplicate samples from each 
assay. 

results observed in the present study in which nonsubtype- 
selective agents such as clonazepam, triazolam, alprazolam, and 
Ro15-1788 were more potent for displacing [3H]alprazolam bind- 
ing from benzodiazepine receptors than agents that preferentially 
recognize BZ-1 receptor sites (i.e., [3CCE and quazepam). Addi- 
tionally, [3H]alprazolam appeared to be weakly inhibited by the 
GABA A receptor antagonist bicuculline methiodide and the con- 
vulsant compound picrotoxin (Table 1). A wide variety of other 
agents did not modulate or were very weak competitors of 
[3H]alprazolam binding in vitro. 

It has been reported that potentiated aggression induced by 
clonidine is completely abolished by alprazolam (30). Also, 
concomitant administration of an alpha2-adrenergic receptor an- 
tagonist (i.e., idazoxan) markedly potentiates the anticonflict 
effects of alprazolam (60). One might speculate that alprazolam 
may be interacting with the alpha2-adrenergic receptor in order to 
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FIG. 3. Competition curves for displacement of [3H]alprazolam binding. 
Displacement of [3H]alprazolam binding (1.0 n_M) to whole rat brain 
membranes was studied using 1 nM-1 mM of each drug. Data (mean % 
specific binding) are from triplicate samples and represent three separate 
experiments. KI (nM) values in descending order of potency are: clona- 
zepam (2.8_0.3), triazolam (5.5---1.5), alprazolam (7.0_+0.6), Ro15- 
1788 (7.8 _+ 2.1), 13CCE (15 --- 3.7), and quazepam (325 _ 12). The graphs 
show mass action displacement of the various compounds which differ in 
their potencies, but do not indicate recognition of multiple sites. 

have these effects. Results obtained in the present study (attempts 
to displace [3H]alprazolam with clonidine, idazoxan, and piper- 
oxane) would indicate that if some modulation is occurring, it is 
not a direct effect on the binding of the benzodiazepine and it is not 
apparent in vitro. Other reports suggest a potential association of 
alprazolam with beta-adrenergic receptors (53, 54, 56). For 
instance, administration (2-3 weeks duration) of alprazolam is 
capable of attenuating a reserpine-induced increase in beta-adren- 
ergic receptors (54). This would not seem to be a direct receptor- 
mediated effect since the beta-receptor antagonist propranolol did 

not interfere appreciably with alprazolam binding. Other indirect 
studies have indicated that alprazolam may be interacting with 
dopamine type-2 receptors in isolated brain areas labeled with 
[3H]sulpiride (16). This observation required the dissection of 
small brain regions (amygdala and nucleus accumbens) in order to 
see the effect. Again, our studies with [3H]alprazolam did not 
show an interaction in the nucleus accumbens. Autoradiographic 
studies may be required to verify any selective effect in a very 
small region. 

Receptor binding studies performed in vitro, which utilize 
benzodiazepine ligands, are usually incubated at 4°C (58). It has 
been shown that many ligands have a higher affinity and lower rate 
of dissociation at lower temperatures (19). These observations 
appear to apply to [3H]alprazolam binding. Furthermore, the 
binding of this triazolobenzodiazepine is not different from other 
benzodiazepines. However, alprazolam may have different effects 
in vivo (40) that cannot be accounted for on the basis of its in vitro 
binding characteristics. 

The present results indicate that [3H]alprazolam possesses 
properties similar to other central benzodiazepine agonists that 
recognize both BZ receptor subtypes in the central nervous 
system. The binding is saturable, specific, selective, and of high 
affinity (recognizing benzodiazepine receptors with a Kd in the 
low nanomolar range). Alprazolam is an excellent probe for 
defining benzodiazepine receptors in the central nervous system 
and its use may prove to be important in future studies aimed at 
investigating these receptors and their pharmacological effects. 
The binding profile of alprazolam does not seem to be distinguish- 
able from that of other benzodiazepines and does not account for 
the unique therapeutic properties of alprazolam (use of the drug in 
the treatment of panic disorder or depression). 
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